
Linux Web Server Management 

  



Table of Contents 

Overview ....................................................................................................................................................... 3 

Install and Configuration ............................................................................................................................... 4 

Apache ...................................................................................................................................................... 4 

Nginx ......................................................................................................................................................... 4 

PM2 (NodeJS) ............................................................................................................................................ 4 

MySQL ....................................................................................................................................................... 5 

Redis .......................................................................................................................................................... 5 

Controlling Web Server Service Daemon ...................................................................................................... 7 

Managing Apache ..................................................................................................................................... 7 

Managing Nginx ........................................................................................................................................ 7 

Managing PM2 (NodeJs) ........................................................................................................................... 8 

Serving PHP Web Application ....................................................................................................................... 9 

Serving via Subdirectory ........................................................................................................................... 9 

Serving via Virtual Host ............................................................................................................................. 9 

Disabling the Web Application ................................................................................................................ 10 

Denying Access to Secret Files ................................................................................................................ 10 

Serving NodeJs Web Application ................................................................................................................ 12 

PM2 General Commands ........................................................................................................................ 13 

Disabling the NodeJs Application ............................................................................................................ 13 

Load Balancing ............................................................................................................................................ 15 

PHP Web Application .............................................................................................................................. 15 

NodeJs Web Application ......................................................................................................................... 15 

 

  



Overview 

We’ll learn the configuration of the web server at vegeta.slc.net (10.22.64.130). This virtual server runs 

with the following specification: 

Specification 

Operating System Linux Ubuntu 14.04.3 LTS x86_64 

RAM 2 GB 

Hard Disk 128 GB 

 

This server is used to serve both PHP web app and NodeJs web app. Other than serving web pages, this 

server also acts as database server and cache server. In order to do so, there’re several application stack 

that is used. There are nginx, apache, pm2 (NodeJS), mysql, and redis. 

When serving a HTTP request, the request will go through a pipeline. The pipeline of incoming request is 

as follow: 

1. All incoming request is handled by nginx which listens on port 80 

2. And then nginx will read the server configuration at /etc/nginx/sites-enabled/* 

3. The request will be forwarded to the configured upstream according to the request hostname, 

for example writing.slc.net to NodeJs. 

If there’s no suitable server found for the request, then it will default to apache which listens to 

port 8000, which the default configuration can be found at /etc/nginx/sites-enabled/default 

4. If it’s forwarded to apache, then the request will once again go through apache server 

configuration which is located at /etc/apache/sites-enabled/* 

The configurations in this directory will determine where this request will be forwarded to. 

5. Finally the response will be returned from the corresponding server to the requesting client. 

  



Install and Configuration 

We’ll be using the most straight forward and trivial possible way to install and configure the application. 

Apache 

Apache may be installed when installing Ubuntu, but if it’s not, then to manually install apache run the 

following command: 

sudo apt-get update 

sudo apt-get install apache2 

Nginx 

To install nginx, run the following command: 

sudo apt-get update 

sudo apt-get install nginx 

PM2 (NodeJS) 

PM2 is the process manager for NodeJs. To install PM2, you’ll need to install several applications first: 

1. Install nodejs 

sudo apt-get install nodejs 

2. Install npm 

sudo apt-get install npm 

3. Installs the pm2 package using npm 

npm install pm2 –g 

4. Configure the auto complete for pm2 

pm2 completion install 

5. Configure the startup script so that pm2 will auto start on boot 

pm2 startup 



MySQL 

The easiest way to install and configure MySQL database server is running the command below: 

sudo apt-get install mysql-server 

And follow the installation wizard till the end, and it should be good to go. 

Redis 

Unlike the previous installation, redis doesn’t have an installation package, so you need to compile the 

source instead. Follow these steps to compile the redis source: 

sudo apt-get install make build-essential tcl8.5 

wget http://download.redis.io/redis-stable.tar.gz 

tar xvzf redis-stable.tar.gz 

cd redis-stable 

make 

sudo make install 

Redis should be installed now. You may want to move the configuration file to the directory /etc/redis. 

Edit the redis.conf find and change the line daemonize no to daemonize yes. This will make redis to run 

as a daemon. 

Now we only need to configure one more thing that is set the redis startup script. Create a new file 

named redis-server.conf in /etc/init.d/ with the following content: 

#!upstart 

description "redis server" 

# start when the system starts 

start on local-filesystems 

stop on runlevel [!2345] 

# redis 'daemonize = yes' causes a fork 

expect fork 

# restart the process if it fails 

http://download.redis.io/redis-stable.tar.gz


# but no more than 10 times in a 5 second period 

respawn 

respawn limit 10 5 

# do not connect stdin/stdout/stderr 

console log 

# create run directory (if necessary) 

pre-start script 

    mkdir -p /var/run/redis 

    chown redis:redis /var/run/redis 

end script 

# run as redis user and group 

setuid redis 

setgid redis 

# working directory 

chdir /var/run/redis 

# actual command to run 

exec /usr/local/bin/redis-server /etc/redis/redis.conf 

Now the configuration is finished. You may try to reboot and run redis-cli to try it out. 

  



Controlling Web Server Service Daemon 

There may be a time where you may want to manage the process of web server, such as restarting the 

process in the case of memory leaks. 

Managing Apache 

To manage apache service, you can do it by using the service command or by using apache2ctl 

command. 

1. Start service 

sudo service apache2 start 

2. Stop service 

sudo service apache2 stop 

3. Restart service 

sudo service apache2 restart 

4. Reload configuration 

sudo service apache2 reload 

5. Test configuration 

apache2ctl -t 

Managing Nginx 

The same goes to managing nginx service, you can do it by using the service command or using nginx 

command. 

1. Start service 

sudo service nginx start 

2. Stop service 

sudo service nginx stop 

3. Restart service 



sudo service nginx restart 

4. Reload configuration 

sudo service nginx reload 

5. Test configuration 

nginx –t 

 

Managing PM2 (NodeJs) 

The difference between service and application is that service is the actual pm2 service daemon, and 

application is the NodeJs web application. Below is the command to control the pm2 service daemon  

1. Start service 

/etc/init.d/pm2-init.sh start 

2. Stop service 

/etc/init.d/pm2-init.sh stop 

3. Restart service 

/etc/init.d/pm2-init.sh restart 

  



Serving PHP Web Application 

There are two ways to serve a PHP web app in this server. The first one is through virtual host, and the 

other is through subdirectory. 

Serving via Subdirectory 

To serve a PHP web app as a subdirectory of this server, you can just add the folder to the document 

root which is located at /home (configured at /etc/apache2/sites-enabled/000-default.conf). 

For example if you add a folder named app there, then you can access the app through 

vegeta.slc.net/app (assuming the hostname of server is vegeta.slc.net). 

Serving via Virtual Host 

1. Place the codes in a directory, preferably /home/[app] 

2. Create a new file in /etc/apache2/sites-available. The filename should be the hostname of the 

app appended by .conf 

3. Edit the new file to configure virtual host.  The hostname should be the same with the one 

configured at DNS server. Directory and document root should point to the public folder of the 

web app. Below is an example of virtual host configuration: 

<VirtualHost *:8000> 

        Options -Indexes 

        ServerName [hostname] 

        DocumentRoot /home/[app public] 

        <Directory /home/[app public]> 

                Allow from all 

                Deny from 10.22.64.21 

                Order allow,deny 

                AllowOverride all 

                Options FollowSymLinks MultiViews 

        </Directory> 

</VirtualHost> 



 

4. After saving, change directory to /etc/apache2/sites-available. 

5. When the current directory is in sites-available, create a soft link to the newly created 

configuration file here, for example if the configuration file name is app.slc.conf, then run this 

command: 

root@server:/etc/apache2/sites-available# ln -s ../sites-enabled/app.slc.conf 

app.slc.conf 

6. Restart the apache2 service by running sudo service apache2 restart. 

7. Make sure that the default apache user (www-data) have the required read or write access to 

the application code. If not, then just add the permission using chmod. 

8. The site should be up and running now 

Disabling the Web Application 

The reason why we put the configuration inside sites-available instead of directly inside sites-enabled, is 

because we can easily enable and disable the web app. If we want to disable, we can just remove the 

soft link of the configuration file located inside /etc/apache2/sites-enabled. 

Denying Access to Secret Files 

The secret files are the files that may contain credentials that we don’t want it to be exposed. Because 

of the configuration of apache in 10.22.64.130, all files in the /home directory can be accessed through 

directly open 10.22.64.130 at the browse.  

For example, if you separate the database credentials to a separate file name .env (just like Laravel 

does), then you can access the .env file through 10.2.64.130/app/.env. This will output the content of 

the file in plain text. 

Please note that this assumes that all file that client can directly access is at a folder named public, and 

the file that client should not access e.g. source code and .env is located at the root of the application. 

To disable access to this file while still exposing the /home directory, you should: 

1. Create a .htaccess file at the root of the application 

2. Write this as the content of the file 

Deny from all 



3. Now open up the configuration file located in /etc/apache2/sites-available/[app].conf, and add 

another directory block for the directory where the secret files is located (e.g. /home/app): 

<Directory /home/app> 

 AllowOverride all 

</Directory> 

4. After saving, restart the apache service by running sudo service apache2 restart 

5. Request to the secret files should now be denied by the web server 

  



Serving NodeJs Web Application 

We use PM2 as the process manager for NodeJs. PM2 makes sure that the node application will be 

restarted in case of a crash. You can think of PM2 as a tool to daemonize our NodeJs application. 

It’s pretty direct to start serving a NodeJS app. You just need to add the application to pm2 and it will 

automatically manage all the other concerns such as restarting and load balancing. In order to do so, 

you’ll need to follow these steps, assuming the app is called nodeapp, the hostname is called 

nodeapp.slc.net, and this app listens to port 5050: 

1. Put all the codes in /home/nodeapp/.  

2. Add the application to pm2 

pm2 start /home/nodeapp/index.js 

3. Create a new file called nodeapp.slc.net.conf inside folder /etc/nginx/sites-available. This new 

file will define the server for our NodeJs app. 

Note that in order to enable web socket, we must sent the required header to our nodeapp 

server, 

Thus the Upgrade and Connection header is configured below. 

upstream nodeapp { 

    server 127.0.0.1:5050; 

} 

server { 

        listen 80; 

        server_name nodeapp.slc.net; 

        location / { 

                proxy_http_version 1.1; 

                proxy_set_header Host $http_host; 

                proxy_set_header X-Forwarded-For $remote_addr; 

                proxy_pass http://nodeapp; 

                proxy_set_header Upgrade $http_upgrade; 



                proxy_set_header Connection "upgrade"; 

        } 

} 

4. Create a soft link to this new file inside the sites-enabled directory (just like how we did for 

apache). 

5. Restart (or reload) the nginx service by running sudo service nginx restart. 

6. The application should be up now. 

PM2 General Commands 

Below is the command that is useful for general purpose controlling the NodeJs web application. 

1. List application 

pm2 l  

2. Start application 

pm2 start [file] 

3. Restart application 

pm2 restart [name] 

4. Stop application  

pm2 stop [name] 

For more detailed command of PM2, you should visit the official documentation here. 

Disabling the NodeJs Application 

To disable a NodeJS app, you should do several things as stated below: 

1. Get the pm2 app name by running pm2 list 

2. Stop the app from serving request 

pm2 stop [app name] 

3. Remove the soft link located at sites-enabled directory /etc/nginx/sites-enabled 

4. Restart (or reload) the nginx service by running sudo service nginx restart 

http://pm2.keymetrics.io/docs/usage/cluster-mode/


If you want to really remove the app instead of stopping the app from serving request, then you should 

run pm2 delete [app name] instead. 

  



Load Balancing 

If there’s a need to load balance the request, it can be easily achieved by using nginx for PHP based web 

app and using PM2 for NodeJS based web app.  

PHP Web Application 

Below is the steps to load balance PHP web application using nginx: 

1. Open the site configuration for the app which needs to be load balanced, for example 

/etc/nginx/sites-available/app.conf 

2. Locate the upstream block, and add more server to it. For example 

upstream app { 

    server 127.0.0.1:8080; 

    server 192.168.1.2:8080; 

} 

3. Determine the load balance strategy to use. The strategy used defaults to round robin. Other 

strategies are least-connected (least_conn directive) and ip-hash (ip_hash directive). To use a 

strategy, use the related directive inside the upstream block. 

4. Restart (or reload) nginx service using sudo service nginx restart. 

NodeJs Web Application 

You can load balance NodeJs app to other server using nginx just like how we did above. But PM2 

supports load balancing to available CPU in a server. Below are the steps to load balance NodeJs web 

application using PM2: 

1. Enable load balancer 

pm2 start app.js -i 0 

2. Reload all apps 

pm2 reload all 

3. Add or reduce process number 

pm2 scale [app name] [instance number] 



 


