

SIMPLE
CONSOLE
APPLICATION
USING RUBY

Oct-2011 Compile No More!

Ruby Programming Language Training Module

By: William Surya Permana.

Simple Console Application using Ruby

Page 1

TABLE OF CONTENT

TABLE OF CONTENT .. 1

CHAPTER 1:

Introduction ... 2

What is Ruby? .. 2

Compiled versus Interpreted Language .. 2

Why using Interpreted Language? .. 3

History .. 3

System requirement... 3

CHAPTER 2:

Getting Started.. 5

Creating a new project... 5

How to comment .. 6

CHAPTER 3:

Create an angry boss program ... 7

Output .. 7

Variable ... 8

Input .. 8

The Case... 8

CHAPTER 4:

Create an Interactive Menu .. 10

Looping ... 10

Selection ... 11

The Case... 11

CHAPTER 5:

Create a File Writer ... 13

CHAPTER 3:
CREATE AN ANGRY BOSS PROGRAM

Simple Console Application using Ruby

Page 2

In this part of the training, you will learn how to make a program (as the boss) that ask the user (as

the employee) what is his/her name, ask what he/she want, and the fired him/her.

Look at this example:

Okay what’s your name?

> Matz

What do you want now, Matz?

> I want a raise.

WHADDAYA MEAN "I WANT A RAISE."?!? YOU'RE FIRED!!

5.1 Output

Now, before we begin, let‟s learn about output in Ruby.

To print a text into the console screen, you can use these command.

 puts print text and end it with line break.

 print print text without a line break.

 printf print text with specific format. To learn more about this format, see

http://sharkysoft.com/archive/printf/docs/javadocs/lava/clib/stdio/doc-

files/specification.htm.

You can use << to concatenated the text. For puts and print, you can these methods to modify

how the program shows the text:

 ljust width create width times spaces, and print it in the left

 rjust width create width times spaces, and print it in the right

 center width create width times spaces, and print it in the center

For example, if you code “puts "Ruby".center 80”, it will print “Ruby” in the center of the console

screen. The program will print 80 spaces and overwrite the “Ruby” text in the center. Note: you

can use single quote or double quote to set the text.

You can also change the case with these methods:

Simple Console Application using Ruby

Page 3

 upcase convert the text to uppercase

 downcase convert the text to lowercase

 swapcase invert the case, the caps will become lowercase, and the opposite.

 capitalize capitalize the first letter and lowercase the others

5.2 Variable

To make a variable just write any plain, lowercase word. Variables may consist of letters, digits

and underscores. With variables, you give a nickname to something you use frequently, or you

can set it with value from user input.

Example: pencil_price = 1000

5.3 Input

After you learned output, let‟s go on to how to make a user input in Ruby.

To scan an input, you can use gets command which get the input in string. But it will also retrieve

the line break. So, maybe you will need the Chomp method which will remove the line break.

Example: inputted_name = gets.chomp

5.4 The Case

So, with that information you can make the program mentioned in the first part. If you are still

don‟t know it, here‟s the code:

1 puts "Okay what's your name?"
2 print "> "
3 name = gets.chomp
4
5 puts "What do you want now, " << name << "?"
6 print "> "
7 want = gets.chomp
8
9 puts 'WHADDAYA MEAN "' << want.upcase << '"?!? YOU' << "'RE FIRED!!"

Simple Console Application using Ruby

Page 4

The first line of code will print “Okay what‟s your name?” in the screen with line break.

The second will print a greater than sign and a space, without line break.

The third will take value from what the user inputted, chomped it, and set it to variable name.

The fifth will print “What do you want now, ” followed by variable name, a question mark, and

a line break.

The sixth will print a greater than sign and a space, without line break.

The seventh will take value from what the user inputted, chomped it, and set it to variable want.

The last will print “WHADDAYA MEAN "” followed by variable want in uppercase, and then

print “?!? YOU'RE FIRED!!”.

This is the end of chapter three.

Simple Console Application using Ruby

Page 5

CHAPTER 4:
CREATE AN INTERACTIVE MENU

In this part of the training, you will learn how to make a program with main menu. And the user will

have to choose want he/she want. After selecting menu one and input his/her name, it wil l back to the

main menu. But if the user select menu two, it will print a greeting and end the program.

Look at this example:

1. Input a name

2. Exit

> 1

What's your name?

> Matz

1. Input a name

2. Exit

> 1

What's your name?

> John Doe

1. Input a name

2. Exit

> 2

Thank you for using this program

4.1 Looping

Now, before we begin, let‟s learn about looping in Ruby.

In Ruby, there are many ways to make a loop. There are times, for, each, while, and until. Times

is the simplest one to do loop. For example, if you code “2.times {puts "Hello"}”, Ruby will

understand it, and puts word Hello on the screen two times.

Simple Console Application using Ruby

Page 6

In this case, we will use until. The format is type “begin”, and followed by the statement(s) you

want to loop, after that type “end until” followed by the condition.

For more information see http://www.tutorialspoint.com/ruby/ruby_loops.htm, or the answer

code in section 4.3.

4.2 Selection

Now, let‟s learn about selection in Ruby.

In Ruby, there are many ways to make a loop. There are if, case, and ternary operator. If is the

simplest one to make a selection. For example, if you code “puts "Your number is odd." if

number%2==1”, Ruby will understand it, and only puts word “Your number is odd.” on the

screen if the variable number modulus by two is one, which means an odd number.

In this case, we will use case. The format is type “case”, and followed by the condition and

statement(s) you want to do, after that type “end”. Use “when” to specify the condition, then you

can follow it with the statement(s) in the next line(s).

For more information see http://www.tutorialspoint.com/ruby/ruby_if_else.htm, or the answer

code in section 4.3.

4.3 The Case

So, here‟s the code:

1 begin
2 puts "1. Input a name"
3 puts "2. Exit"
4 print "> "
5 input = gets.to_i
6
7 case input
8 when 1
9 puts "What's your name?"
10 print "> "

Simple Console Application using Ruby

Page 7

11 gets
12 when 2
13 puts "Thank you for using this program."
14 else
15 puts "Invalid input."
16 end
17 end until input == 2

The first and the last line of codes will mark the loop. The program will do the loop until the

value of variable input is 2. Inside the loop it will print “1. Input a name”, “2. Exit”, and “> ”

(line 2-4). Later, in line 5, it will scan what the user inputted, converted it to integer (using to_i),

and save it to variable input.

You can use to_i to convert the scanned input into integer, to_s to convert the scanned input into

string, or to_f to convert the scanned input into float.

The next part it (line 7-16) will do a selection to the variable input. When variable input value

is 1, it will print “What's your name?”, and “> ” (line 9-10). Later, in line 11, it will scan what

the user inputted. But when variable input value is 2, it will print “Thank you for using this

program.” Else, it will print “Invalid input.”.

This is the end of chapter four.

Simple Console Application using Ruby

Page 8

CHAPTER 5:
CREATE A FILE WRITER

In this part of the training, you will learn how to make a program which can write a file.

Look at this example:

Type your document file and location (e.g. "D:\text.txt") below!

> D:\text.txt

Type your document now. Type "::end::" to finish typing:

> Hello

> World!

> I’m creating this file using my own program.

> ::end::

File saved.

Type a new document again? [Yes/No]

> AAA

Invalid input.

Type a new document again? [Yes/No]

> No

5.1 Writing file

Now, let‟s learn about file writing in Ruby.

To write a file in Ruby, you can use new method in File class (File.new), and specify the access

right mode, “w” in this case. “w” mode will write a new file or overwrite existing file. If you want

to append something to the file, you can use “a” mode. To write to the file, you still can use puts,

print, and printf. After that, don‟t forget to close the file.

Simple Console Application using Ruby

Page 9

For example, you can code:

file = File.new("D:\\text.txt", "w")
file.puts("Hello World!")
file.close()

In that example, you will create a new file name text.txt in drive D and you can write it. The

program will write “Hello World!” to the file, and finally close the file.

For more information, see http://www.tutorialspoint.com/ruby/ruby_input_output.htm.

5.2 The Case

In this case, you will need main looping, which ended when user don‟t want to type a new

document again. You must validate them using selection. Next, in the main loop, you will need

another loop that will continue append the file until user type “::end::”. Now, try to make the

program by yourself!

This is the end of chapter five.

Simple Console Application using Ruby

Page 10

CHAPTER 6:
CREATE A PRODUCT LIST MANAGER

In this last part of the training, you will learn how to make a product list manager program which can

read and write a file, and also use all of the syntax you learn before.

Look at this example:

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 1

PRODUCT LIST

No Product name Price Stock

1. Book Rp. 3000 10

2. Pencil Rp. 1000 9

3. Eraser Rp. 500 5

Press Enter to continue.

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 2

Name of the product:

> Pen

Simple Console Application using Ruby

Page 11

The price of Pen in rupiahs:

> 2500

The amount of Pen you own:

> 20

Product added successfully.

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 3

Type the product name that you want to delete:

> Book

Product deleted successfully.

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 4

Thank you. See you later.

Simple Console Application using Ruby

Page 12

6.1 Reading file

Now, let‟s learn about file reading in Ruby.

Same as writing file, to read a file in Ruby, you can use new method in File class (File.new), and

specify the access right mode, “r” in this case. But, when you want to get the value of the line

you can‟t use „gets‟, you need using „each‟ instead.

For example, you can code:

file = File.new("D:\\text.txt", "r")
file.each {|thisline|
 puts thisline.chomp
}
file.close()

In that example, you will read an existing file name text.txt in drive D. The program will read

the file each lines, save it in variable thisline and print variable thisline on the screen after

chomped, and finally close the file.

6.2 Getting value from file

In previous section, you already learned how to print all lines in the file to the screen. Now, you

will learn how to get the value from the file. For example, if in the file contains “ABC#12”, and

you want to print or get the value of “ABC” and “12”, you can code:

file = File.new("D:\\text.txt", "r")
file.each {|thisline|
 print thisline[0..thisline.index("#")-1]
 print " "
 puts thisline[thisline.index("#")+1..thisline.length]
}
file.close()

As you can see, you can use range index to get the specified value from variable thisline. In the

example above, “print thisline[0..thisline.index("#")-1]” will print thisline from index 0 to index

where character “#” located and subtract it by one. Then, “thisline[thisline.index("#")+1..

thisline.length]” will print thisline from index where character “#” located and added it by one

to the end of this line.

Simple Console Application using Ruby

Page 13

For more information, see http://www.tutorialspoint.com/ruby/ruby_input_output.htm.

6.3 The Case

In this case, you will need main looping, which ended when user don‟t want to exit (input 4). You

must validate them using selection. Next, in the main loop, you will need selection to the inputted

number. There are four possible cases.

When input is 1, read the file and print the product list to the screen (using mode “r”). We will

split each several times here. First, we separate the string from the thisline before “;” sign, save

it as variable productname and remainingtext. Second, we separate the string from the

remainingtext before “;” sign, save it as variable productprice and productstock.

When input is 2, append the file with the new product that inputted by user (using mode “a”).

When input is 3, read the file (using mode “r”, same as when input 1) and save the product l ist

to a new variable if it is not the product that the user want to delete. Next, the program will

write that new variable (using mode “r”).

When input is 4, it just shows a message.

For more detail, you can learn the code below by yourself.

1 begin
2 puts 'Hello, Manager!'
3 puts 'What do you want to do?'
4 puts '1. View product list'
5 puts '2. Add a new product'
6 puts '3. Delete an existing product'
7 puts '4. Exit'
8 print '> '
9 input = gets.to_i
10
11 case input
12 when 1
13 line = 1
14 puts "PRODUCT LIST"
15 puts "------------"
16 puts "No. ".ljust(6) << "Product name".ljust(20) << ' '<<

"Price".rjust(6) << "Stock".rjust(6)
17
18 file = File.new('D:\\text.txt', 'r')
19 file.each {|thisline|
20 productname = thisline[0..thisline.index(';')-1]
21 remainingtext = thisline[thisline.index(';')+1..thisline.length]

Simple Console Application using Ruby

Page 14

22
23 productprice = remainingtext[0..remainingtext.index(';')-1]
24 productstock = remainingtext[remainingtext.index(';')+1..

remainingtext.length]
25
26 puts (line.to_s.<<".").ljust(6) << productname.ljust(20) << 'Rp.'<<

productprice.rjust(6) << productstock.rjust(6)
27 line += 1
28 }
29 file.close()
30 print 'Press Enter to continue.'
31 when 2
32 begin
33 puts 'Name of the product:'
34 print '> '
35 productname = gets.chomp
36 end until productname.length > 0
37
38 begin
39 puts 'The price of ' << productname << ' in rupiahs:'
40 print '> '
41 productprice = gets.chomp
42 begin
43 isnumber = true
44 Integer(productprice)
45 rescue
46 isnumber = false
47 end
48 end until isnumber == true and productprice.to_i > 0
49
50 begin
51 puts 'The amount of ' << productname << ' you own:'
52 print '> '
53 productstock = gets.chomp
54 begin
55 isnumber = true
56 Integer(productstock)
57 rescue
58 isnumber = false
59 end
60 end until isnumber == true and productstock.to_i > 0
61
62 file = File.new('D:\\text.txt', 'a')
63 file.puts productname << ";" << productprice << ";" << productstock
64 file.close()
65
66 puts 'Product added successfully.'
67 when 3
68 puts 'Type the product name that you want to delete:'
69 print '> '
70 deletedproductname = gets.chomp
71 deletedproducts = 0
72 newfilestring = ''
73
74 file = File.new('D:\\text.txt', 'r')

Simple Console Application using Ruby

Page 15

75 file.each {|thisline|
76 productname = thisline[0..thisline.index(';')-1]
77 remainingtext = thisline[thisline.index(';')+1..thisline.length]
78
79 productprice = remainingtext[0..remainingtext.index(';')-1]
80 productstock = remainingtext[remainingtext.index(';')+1..

remainingtext.length]
81
82 if productname != deletedproductname
83 newfilestring += productname << ";" << productprice << ";" <<

productstock
84 else
85 deletedproducts += 1
86 end
87 }
88 file.close()
89
90 if deletedproducts > 0
91 file = File.new('D:\\text.txt', 'w')
92 file.print newfilestring
93 file.close()
94 puts 'Product deleted successfully.'
95 else
96 puts 'No such product name exists.'
97 end
98 when 4
99 print 'Thank you. See you later.'
100 else
101 print 'Invalid input.'
102 end
103 gets
104 puts
105 end until input==4

This is the end of chapter six.

This is the end of our training; I hope it can help you to understand the basic of Ruby.

Simple Console Application using Ruby

Page 16

BIBLIOGRAPHY .. 7

Web .. 21

Book .. 21

Simple Console Application using Ruby

Page 17

CHAPTER 1:
INTRODUCTION

1.1 What is Ruby?

Ruby is a dynamic, open source interpreted programming language which you don‟t need to

compile the source code first if you want to run it. Ruby is focus on simplicity and productivity. It

has an elegant syntax that is natural to read and easy to write.

It is used on many programs, including NASA Langley Research Center simulator, Motorola

simulator, Google Sketch-Up, RPG Maker, and many more. For more information, see

http://www.ruby-lang.org/en/documentation/success-stories/.

1.2 Compiled versus Interpreted Language

From this training module subtitle “Compile No More!” you might already notice that in Ruby

Programming Language, you don‟t need to compile the source code. This kind of programming

language is called as interpreted language. So what‟s the different?

Compiled Language

A compiled language is a programming language whose implementations are typically

compilers which generate machine code from source code.

Some of compiled languages are: C (including C++ and Objective C), FORTRAN, Pascal, and

Basic.

Interpreted Language

An interpreted language is a programming language whose implementations are typically

interpreters which executing the source code step-by-step where no translation takes place.

Some of interpreted languages are: Ruby, Python, and Scripts (including Command Line Script,

Java script, and J-script).

http://www.ruby-lang.org/en/documentation/success-stories/

Simple Console Application using Ruby

Page 18

1.3 Why using Interpreted Language?

Interpreting a language gives implementations some additional flexibility over compiled

implementations. Features are often easier to implement in interpreters than in compilers include

 platform independence

 reflection and reflective use of the evaluator (e.g. a first-order eval function)

 dynamic typing (variant type)

 smaller executable program size (since implementations have flexibility to choose the
instruction code)

 dynamic scoping

1.4 History

Ruby was conceived on February 24, 1993 by Yukihiro Matsumoto who wished to create a new

language that balanced functional programming with imperative programming. Matsumoto has

stated, "I wanted a scripting language that was more powerful than Perl, and more object -

oriented than Python. That's why I decided to design my own language".

At a Google Tech Talk in 2008 Matsumoto further stated, "I hope to see Ruby help every

programmer in the world to be productive, and to enjoy programming, and to be happy. That is

the primary purpose of Ruby language."

1.5 System requirement

In order to make the computer can run a Ruby Programming Language, you must install an IDE.

There are many IDE which supports Ruby now, like NetBeans, RubyForge, RadRails, RubyMine,

and ActiveState Komodo. In this module, we will use NetBeans with JRuby interpreter which is

more popular and often used.

When installing NetBeans, don‟t forget to tick the Ruby component, or just go with the full

installation.

Simple Console Application using Ruby

Page 19

Note: NetBeans release 7.0 and above no longer supports Ruby (and Rails). You can check if

latest separate NetBeans IDE Bundle for Ruby is available or not at http://wiki.netbeans.org/

RubySupport.

http://wiki.netbeans.org/RubySupport
http://wiki.netbeans.org/RubySupport

Simple Console Application using Ruby

Page 20

CHAPTER 2:
GETTING STARTED

2.1 Creating a new project

To get started, open NetBeans. Click New Project in File menu, and select Ruby Application in

New Project Window.

Simple Console Application using Ruby

Page 21

In the next window, specify your project name, location, main file, and platform. Hit Finish then

your project will be created.

NetBeans will automatically create some folders and files. You can leave them or delete some

of them. To run a Ruby project, at least you must have following folders and files in your project .

2.2 How to comment

In Ruby programming language you can use =begin to begin commenting some lines of syntax,

and =end to end it. You can also use # in front of the text which you want to comment until the

end that line.

Example:

=begin
 Comment line 1
 Comment line 2
=end

#Single line comment

Simple Console Application using Ruby

Page 22

CHAPTER 3:
CREATE AN ANGRY BOSS PROGRAM

In this part of the training, you will learn how to make a program (as the boss) that ask the user (as

the employee) what is his/her name, ask what he/she want, and the fired him/her.

Look at this example:

Okay what’s your name?

> Matz

What do you want now, Matz?

> I want a raise.

WHADDAYA MEAN "I WANT A RAISE."?!? YOU'RE FIRED!!

5.5 Output

Now, before we begin, let‟s learn about output in Ruby.

To print a text into the console screen, you can use these command.

 puts print text and end it with line break.

 print print text without a line break.

 printf print text with specific format. To learn more about this format, see

http://sharkysoft.com/archive/printf/docs/javadocs/lava/clib/stdio/doc-

files/specification.htm.

You can use << to concatenated the text. For puts and print, you can these methods to modify

how the program shows the text:

 ljust width create width times spaces, and print it in the left

 rjust width create width times spaces, and print it in the right

 center width create width times spaces, and print it in the center

http://sharkysoft.com/archive/printf/docs/javadocs/lava/clib/stdio/doc-files/specification.htm
http://sharkysoft.com/archive/printf/docs/javadocs/lava/clib/stdio/doc-files/specification.htm

Simple Console Application using Ruby

Page 23

For example, if you code “puts "Ruby".center 80”, it will print “Ruby” in the center of the console

screen. The program will print 80 spaces and overwrite the “Ruby” text in the center. Note: you

can use single quote or double quote to set the text.

You can also change the case with these methods:

 upcase convert the text to uppercase

 downcase convert the text to lowercase

 swapcase invert the case, the caps will become lowercase, and the opposite.

 capitalize capitalize the first letter and lowercase the others

5.6 Variable

To make a variable just write any plain, lowercase word. Variables may consist of letters, digits

and underscores. With variables, you give a nickname to something you use frequently, or you

can set it with value from user input.

Example: pencil_price = 1000

5.7 Input

After you learned output, let‟s go on to how to make a user input in Ruby.

To scan an input, you can use gets command which get the input in string. But it will also retrieve

the line break. So, maybe you will need the Chomp method which will remove the line break.

Example: inputted_name = gets.chomp

5.8 The Case

So, with that information you can make the program mentioned in the first part. If you are still

don‟t know it, here‟s the code:

1 puts "Okay what's your name?"
2 print "> "
3 name = gets.chomp
4

Simple Console Application using Ruby

Page 24

5 puts "What do you want now, " << name << "?"
6 print "> "
7 want = gets.chomp
8
9 puts 'WHADDAYA MEAN "' << want.upcase << '"?!? YOU' << "'RE FIRED!!"

The first line of code will print “Okay what‟s your name?” in the screen with line break.

The second will print a greater than sign and a space, without line break.

The third will take value from what the user inputted, chomped it, and set it to variable name.

The fifth will print “What do you want now, ” followed by variable name, a question mark, and

a line break.

The sixth will print a greater than sign and a space, without line break.

The seventh will take value from what the user inputted, chomped it, and set it to variable want.

The last will print “WHADDAYA MEAN "” followed by variable want in uppercase, and then

print “?!? YOU'RE FIRED!!”.

This is the end of chapter three.

Simple Console Application using Ruby

Page 25

CHAPTER 4:
CREATE AN INTERACTIVE MENU

In this part of the training, you will learn how to make a program with main menu. And the user will

have to choose want he/she want. After selecting menu one and input his/her name, it wil l back to the

main menu. But if the user select menu two, it will print a greeting and end the program.

Look at this example:

1. Input a name

2. Exit

> 1

What's your name?

> Matz

1. Input a name

2. Exit

> 1

What's your name?

> John Doe

1. Input a name

2. Exit

> 2

Thank you for using this program

4.4 Looping

Now, before we begin, let‟s learn about looping in Ruby.

In Ruby, there are many ways to make a loop. There are times, for, each, while, and until. Times

is the simplest one to do loop. For example, if you code “2.times {puts "Hello"}”, Ruby will

understand it, and puts word Hello on the screen two times.

Simple Console Application using Ruby

Page 26

In this case, we will use until. The format is type “begin”, and followed by the statement(s) you

want to loop, after that type “end until” followed by the condition.

For more information see http://www.tutorialspoint.com/ruby/ruby_loops.htm, or the answer

code in section 4.3.

4.5 Selection

Now, let‟s learn about selection in Ruby.

In Ruby, there are many ways to make a loop. There are if, case, and ternary operator. If is the

simplest one to make a selection. For example, if you code “puts "Your number is odd." if

number%2==1”, Ruby will understand it, and only puts word “Your number is odd.” on the

screen if the variable number modulus by two is one, which means an odd number.

In this case, we will use case. The format is type “case”, and followed by the condition and

statement(s) you want to do, after that type “end”. Use “when” to specify the condition, then you

can follow it with the statement(s) in the next line(s).

For more information see http://www.tutorialspoint.com/ruby/ruby_if_else.htm, or the answer

code in section 4.3.

4.6 The Case

So, here‟s the code:

1 begin
2 puts "1. Input a name"
3 puts "2. Exit"
4 print "> "
5 input = gets.to_i
6
7 case input
8 when 1
9 puts "What's your name?"
10 print "> "

http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_if_else.htm

Simple Console Application using Ruby

Page 27

11 gets
12 when 2
13 puts "Thank you for using this program."
14 else
15 puts "Invalid input."
16 end
17 end until input == 2

The first and the last line of codes will mark the loop. The program will do the loop until the

value of variable input is 2. Inside the loop it will print “1. Input a name”, “2. Exit”, and “> ”

(line 2-4). Later, in line 5, it will scan what the user inputted, converted it to integer (using to_i),

and save it to variable input.

You can use to_i to convert the scanned input into integer, to_s to convert the scanned input into

string, or to_f to convert the scanned input into float.

The next part it (line 7-16) will do a selection to the variable input. When variable input value

is 1, it will print “What's your name?”, and “> ” (line 9-10). Later, in line 11, it will scan what

the user inputted. But when variable input value is 2, it will print “Thank you for using this

program.” Else, it will print “Invalid input.”.

This is the end of chapter four.

Simple Console Application using Ruby

Page 28

CHAPTER 5:
CREATE A FILE WRITER

In this part of the training, you will learn how to make a program which can write a file.

Look at this example:

Type your document file and location (e.g. "D:\text.txt") below!

> D:\text.txt

Type your document now. Type "::end::" to finish typing:

> Hello

> World!

> I’m creating this file using my own program.

> ::end::

File saved.

Type a new document again? [Yes/No]

> AAA

Invalid input.

Type a new document again? [Yes/No]

> No

5.3 Writing file

Now, let‟s learn about file writing in Ruby.

To write a file in Ruby, you can use new method in File class (File.new), and specify the access

right mode, “w” in this case. “w” mode will write a new file or overwrite existing file. If you want

to append something to the file, you can use “a” mode. To write to the file, you still can use puts,

print, and printf. After that, don‟t forget to close the file.

Simple Console Application using Ruby

Page 29

For example, you can code:

file = File.new("D:\\text.txt", "w")
file.puts("Hello World!")
file.close()

In that example, you will create a new file name text.txt in drive D and you can write it. The

program will write “Hello World!” to the file, and finally close the file.

For more information, see http://www.tutorialspoint.com/ruby/ruby_input_output.htm.

5.4 The Case

In this case, you will need main looping, which ended when user don‟t want to type a new

document again. You must validate them using selection. Next, in the main loop, you will need

another loop that will continue append the file until user type “::end::”. Now, try to make the

program by yourself!

This is the end of chapter five.

http://www.tutorialspoint.com/ruby/ruby_input_output.htm

Simple Console Application using Ruby

Page 30

CHAPTER 6:
CREATE A PRODUCT LIST MANAGER

In this last part of the training, you will learn how to make a product list manager program which can

read and write a file, and also use all of the syntax you learn before.

Look at this example:

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 1

PRODUCT LIST

No Product name Price Stock

1. Book Rp. 3000 10

2. Pencil Rp. 1000 9

3. Eraser Rp. 500 5

Press Enter to continue.

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 2

Name of the product:

> Pen

Simple Console Application using Ruby

Page 31

The price of Pen in rupiahs:

> 2500

The amount of Pen you own:

> 20

Product added successfully.

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 3

Type the product name that you want to delete:

> Book

Product deleted successfully.

Hello, Manager!

What do you want to do?

1. View product list

2. Add a new product

3. Delete an existing product

4. Exit

> 4

Thank you. See you later.

Simple Console Application using Ruby

Page 32

6.4 Reading file

Now, let‟s learn about file reading in Ruby.

Same as writing file, to read a file in Ruby, you can use new method in File class (File.new), and

specify the access right mode, “r” in this case. But, when you want to get the value of the line

you can‟t use „gets‟, you need using „each‟ instead.

For example, you can code:

file = File.new("D:\\text.txt", "r")
file.each {|thisline|
 puts thisline.chomp
}
file.close()

In that example, you will read an existing file name text.txt in drive D. The program will read

the file each lines, save it in variable thisline and print variable thisline on the screen after

chomped, and finally close the file.

6.5 Getting value from file

In previous section, you already learned how to print all lines in the file to the screen. Now, you

will learn how to get the value from the file. For example, if in the file contains “ABC#12”, and

you want to print or get the value of “ABC” and “12”, you can code:

file = File.new("D:\\text.txt", "r")
file.each {|thisline|
 print thisline[0..thisline.index("#")-1]
 print " "
 puts thisline[thisline.index("#")+1..thisline.length]
}
file.close()

As you can see, you can use range index to get the specified value from variable thisline. In the

example above, “print thisline[0..thisline.index("#")-1]” will print thisline from index 0 to index

where character “#” located and subtract it by one. Then, “thisline[thisline.index("#")+1..

thisline.length]” will print thisline from index where character “#” located and added it by one

to the end of this line.

Simple Console Application using Ruby

Page 33

For more information, see http://www.tutorialspoint.com/ruby/ruby_input_output.htm.

6.6 The Case

In this case, you will need main looping, which ended when user don‟t want to exit (input 4). You

must validate them using selection. Next, in the main loop, you will need selection to the inputted

number. There are four possible cases.

When input is 1, read the file and print the product list to the screen (using mode “r”). We will

split each several times here. First, we separate the string from the thisline before “;” sign, save

it as variable productname and remainingtext. Second, we separate the string from the

remainingtext before “;” sign, save it as variable productprice and productstock.

When input is 2, append the file with the new product that inputted by user (using mode “a”).

When input is 3, read the file (using mode “r”, same as when input 1) and save the product l ist

to a new variable if it is not the product that the user want to delete. Next, the program will

write that new variable (using mode “r”).

When input is 4, it just shows a message.

For more detail, you can learn the code below by yourself.

1 begin
2 puts 'Hello, Manager!'
3 puts 'What do you want to do?'
4 puts '1. View product list'
5 puts '2. Add a new product'
6 puts '3. Delete an existing product'
7 puts '4. Exit'
8 print '> '
9 input = gets.to_i
10
11 case input
12 when 1
13 line = 1
14 puts "PRODUCT LIST"
15 puts "------------"
16 puts "No. ".ljust(6) << "Product name".ljust(20) << ' '<<

"Price".rjust(6) << "Stock".rjust(6)
17
18 file = File.new('D:\\text.txt', 'r')
19 file.each {|thisline|
20 productname = thisline[0..thisline.index(';')-1]
21 remainingtext = thisline[thisline.index(';')+1..thisline.length]

http://www.tutorialspoint.com/ruby/ruby_input_output.htm

Simple Console Application using Ruby

Page 34

22
23 productprice = remainingtext[0..remainingtext.index(';')-1]
24 productstock = remainingtext[remainingtext.index(';')+1..

remainingtext.length]
25
26 puts (line.to_s.<<".").ljust(6) << productname.ljust(20) << 'Rp.'<<

productprice.rjust(6) << productstock.rjust(6)
27 line += 1
28 }
29 file.close()
30 print 'Press Enter to continue.'
31 when 2
32 begin
33 puts 'Name of the product:'
34 print '> '
35 productname = gets.chomp
36 end until productname.length > 0
37
38 begin
39 puts 'The price of ' << productname << ' in rupiahs:'
40 print '> '
41 productprice = gets.chomp
42 begin
43 isnumber = true
44 Integer(productprice)
45 rescue
46 isnumber = false
47 end
48 end until isnumber == true and productprice.to_i > 0
49
50 begin
51 puts 'The amount of ' << productname << ' you own:'
52 print '> '
53 productstock = gets.chomp
54 begin
55 isnumber = true
56 Integer(productstock)
57 rescue
58 isnumber = false
59 end
60 end until isnumber == true and productstock.to_i > 0
61
62 file = File.new('D:\\text.txt', 'a')
63 file.puts productname << ";" << productprice << ";" << productstock
64 file.close()
65
66 puts 'Product added successfully.'
67 when 3
68 puts 'Type the product name that you want to delete:'
69 print '> '
70 deletedproductname = gets.chomp
71 deletedproducts = 0
72 newfilestring = ''
73
74 file = File.new('D:\\text.txt', 'r')

Simple Console Application using Ruby

Page 35

75 file.each {|thisline|
76 productname = thisline[0..thisline.index(';')-1]
77 remainingtext = thisline[thisline.index(';')+1..thisline.length]
78
79 productprice = remainingtext[0..remainingtext.index(';')-1]
80 productstock = remainingtext[remainingtext.index(';')+1..

remainingtext.length]
81
82 if productname != deletedproductname
83 newfilestring += productname << ";" << productprice << ";" <<

productstock
84 else
85 deletedproducts += 1
86 end
87 }
88 file.close()
89
90 if deletedproducts > 0
91 file = File.new('D:\\text.txt', 'w')
92 file.print newfilestring
93 file.close()
94 puts 'Product deleted successfully.'
95 else
96 puts 'No such product name exists.'
97 end
98 when 4
99 print 'Thank you. See you later.'
100 else
101 print 'Invalid input.'
102 end
103 gets
104 puts
105 end until input==4

This is the end of chapter six.

This is the end of our training; I hope it can help you to understand the basic of Ruby.

Simple Console Application using Ruby

Page 36

BIBLIOGRAPHY

Web

http://www.ruby-lang.org/

http://en.wikipedia.org/wiki/Ruby_(programming_language)

http://rubylearning.com/satishtalim/tutorial.html

http://www.tutorialspoint.com/ruby/

http://www.troubleshooters.com/codecorn/ruby/basictutorial.htm

Book

Why the lucky stiff. 2005. Why's (poignant) Guide to Ruby. A-Press.

http://www.ruby-lang.org/
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://rubylearning.com/satishtalim/tutorial.html
http://www.tutorialspoint.com/ruby/
http://www.troubleshooters.com/codecorn/ruby/basictutorial.htm

